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Abstract Recently developed methods of monotonic optimization have been ap-
plied successfully for studying a wide class of nonconvex optimization problems, that
includes, among others, generalized polynomial programming, generalized multipli-
cative and fractional programming, discrete programming, optimization over the effi-
cient set, complementarity problems. In the present paper the monotonic approach
is extended to the General Bilevel Programming GBP Problem. It is shown that
(GBP) can be transformed into a monotonic optimization problem which can then be
solved by “polyblock” approximation or, more efficiently, by a branch-reduce-and-
bound method using monotonicity cuts. The method is particularly suitable for Bilevel
Convex Programming and Bilevel Linear Programming.
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AMS subject classification 90C26 · 65K05 · 90C20 · 90C30 · 90C56 · 78M50

1 Introduction

In hierarchical systems involving two levels of decision making with different, some-
times conflicting, objectives, the following optimization problem may arise. The higher
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level (leader) controls a first set of decision variables (for instance transfer prices,
resources allocation, capital investment channelling, etc...), while the lower level (fol-
lower) controls a second set of decision variables (activity level, production volume,
technology alternatives, etc...). To each decision made by the higher level, the lower
level responds by a decision optimizing its objective function over a constraint set
which depends upon the decision of the higher level. Assuming that the higher level
perfectly knows the reaction of the lower level to each of its decisions, the problem
is to find an optimal decision of the higher level, i.e. a decision that ensures the best
value of the overall objective function under these conditions. When the objective
functions of the leader and the follower as well as the constraints of the lower level
are linear, this problem is called a bilevel linear program (BLP).

Originally formulated and studied as a mathematical program by Bracken and
McGill (8,9), bilevel and, more generally, multilevel optimization has become a sub-
ject of extensive research during the last two decades due to numerous applications
in diverse fields: economic development policy, agriculture economics, road network
design, oil industry regulation, international water systems and flood control, energy
policy, traffic assignment, structural analysis in mechanics, etc. Multilevel optimization
can also be useful for the study of hierarchical designs in many complex systems, in
particular, biological systems (see, e.g. (5,40)).

A special case of (BLP) where the follower’s objective function is the negative
of the leader’s, reduces to the linear max–min problem which is actually equivalent
to a linearly constrained convex maximization problem and hence can be solved by
methods extensively studied during the last three decades. The general bilevel lin-
ear programming problem is, however, more complicated and fraught with pitfalls.
Actually, several methods proposed in the literature for its solution turned out to be
nonconvergent, or incorrect or convergent to a local optimum (see, e.g. (6)), where
some of these errors have been reported). A review of bilevel optimization methods
has been given in (34) (see also [38]).

Most solution approaches proposed to date for (BLP) use, directly or indirectly,
a reformulation of it as a single level mathematical program which, in most cases, is
a linear program with an additional nonconvex constraint. It is this additional non-
convex constraint, of a rather peculiar form, which constitutes the major source of
difficulty in this approach and is actually the cause of most of the above mentioned
errors.

While the bilevel linear problem has been extensively studied, the literature on
general (nonlinear) bilevel problem (GBP) is rather poor. So far most research in
this field is limited to convex or quadratic bilevel programming problems, and/or is
mainly concerned with finding stationary points and local minima rather than global
optimal solutions [2, 3, 7, 10, 23, 26, 31, 39, 41]. For general nonlinear bilevel programs,
most investigations have been concentrated on theoretical aspects (11,13,14,21,25).
Very few exact methods exist, though some general properties of (GBP), including its
relation to multiobjective programming, have been discussed (15,20,21,27).

A specific feature of (GBP) that has been observed in our earlier works (29,30)
is that the nonconvex constraint generated by the second level problem is in fact a
monotonic constraint. Consequently, (GBP) actually belongs to the realm of mono-
tonic optimization problems as formulated and studied recently in a series of papers
(32,33,35,36).

The aim of the present paper is to develop a novel approach to the general bilevel
programming problem (GBP), and especially the Bilevel Convex Programming
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Problem, based on this monotonic reformulation. First, in Sect. 2, we review some
basic concepts and results of monotonic optimization. In Sect. 3 we state (GBP), to-
gether with the basic assumptions, and reformulate it as a a single level monotonic
optimization problem. Next, in Sect. 4 a solution approach is outlined by specializing
a method called polyblock approximation earlier proposed in (32,33) for monotonic
optimization. Since the complexity of this algorithm increases rapidly with the dimen-
sion of the problem, in Sect. 5 a more suitable method, of the branch and cut type,
called branch-reduce-and-bound (BRB) method, is presented. Section 6 is devoted to
some implementation issues, while Sect. 7 discusses cases when the algorithm can be
modified so as to work in a space of dimension smaller than m and also clarifies the
relation of bilevel programming to optimization over the efficient set in multiobjec-
tive programming. Finally, the paper closes with some numerical examples illustrating
how the method works in practice.

2 Some basic concepts of monotonic optimization

We begin with a review of some basic concepts and results of monotonic optimization
as discussed in (32,36).

Let [a, b] = {x ∈ R
n| a ≤ x ≤ b} be a box in R

n. A function f : [a, b] → R is said
to be increasing if a ≤ z ≤ z′ ≤ b implies f (z) ≤ f (z′); decreasing if a ≤ z ≤ z′ ≤ b
implies f (z) ≥ f (z′); monotonic if it is either increasing or decreasing. Increasing and
decreasing functions abound in mathematics, engineering, economics and other fields.

A set E ⊂ [a, b] is said to be downward (or normal) if a ≤ x′ ≤ x ∈ E implies
x′ ∈ E; upward (or conormal, or reverse normal) if b ≥ x′ ≥ x ∈ E implies x′ ∈ E.

Proposition 1 If ϕ: [a, b] → R is increasing then the set G = {x ∈ [a, b]| ϕ(x) ≤ 0} is
downward, the set H = {x ∈ [a, b]| ϕ(x) ≥ 0} is upward.

Proof Immediate. �

A point z in a downward set G ⊂ [a, b] is called an upper boundary point if z ∈ clG
and z′ > z implies z′ /∈ G. A point z of an upward set H ⊂ [a, b] is called a lower
boundary point if z ∈ clH and z′ < z implies z′ /∈ H. The set of upper boundary points
of G is called its upper boundary and is denoted by ∂+G. The set of lower boundary
points of H is called its lower boundary and is denoted by ∂−H.

If an increasing function ϕ(x) is continuous then the intersection of G = {x ∈
[a, b]| ϕ(x) ≤ 0} with any line segment joining a point p ∈ G with a point q ∈ [p, b] \G
is a segment [p, πp(q)] ⊂ [p, q] such that πp(q) ∈ ∂+G. Clearly, ϕ(πp(q)) = 0 and

πp(q) = q− ᾱ(q− p) with ᾱ = min{α| ϕ(q− α(q− p)) ≤ 0}, (1)

= p+ β̄(q− p) with β̄ = max{β| ϕ(p+ β(q− p)) ≤ 0}. (2)

Proposition 2 The maximum of a continuous increasing function (or the minimum of
a continuous decreasing function) over the set G = {x ∈ [a, b]| ϕ(x) ≤ 0} is achieved on
∂+G.

Proof Immediate. �

Given a set A ⊂ [a, b] the downward hull (normal hull) of A, written A�, is the
smallest downward set containing A. The upward hull (or conormal hull) of A, written
�A, is the smallest upward set containing A.
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Proposition 3

(1) The downward hull of a set A ⊂ [a, b] ⊂ R
n+ is the set A� = ∪z∈A[a, z] = {y ∈

[a, b]| x ≤ y for some x ∈ A}. If A is compact then so is A�.
(2) The upward hull of a set A ⊂ [a, b] ⊂ R

n+ is the set �A = ∪z∈A[z, b] = {y ∈
[a, b]| y ≤ x for some x ∈ A}. If A is compact then so is �A.

Proof It suffices to prove (1) because the proof of (2) is similar. Let P = ∪z∈A[a, z].
Clearly P is downward and P ⊃ A, hence P ⊃ A�. Conversely, if x ∈ P then x ∈ [a, z]
for some z ∈ A ⊂ A�, hence x ∈ A� by normality of A�, so that P ⊂ A� and there-
fore, P = A�. If A is compact then A is contained in a ball B centered at 0, and
if xk ∈ A�, k = 1, 2, . . . , then since xk ∈ [a, zk] ⊂ B, there exists a subsequence
{kν} ⊂ {1, 2, . . .} such that zkν → z0 ∈ A, xkν → x0 ∈ [a, z0], hence x0 ∈ A�, proving
the compactness of A�. �

If V is a finite subset of [a, b] then P = V� (the downward hull of V) is called
a polyblock with vertex set V. By Proposition 3, P = ∪z∈V[a, z]. A vertex z of a
polyblock is called proper if there is no vertex z′ �= z “dominating” z, i.e., such that
z′ ≥ z. An improper vertex or improper element of V is an element of V which is not
a proper vertex. Obviously, a polyblock is fully determined by its proper vertex set;
more precisely, a polyblock is the downward hull of its proper vertices.

Similarly, if V is a finite subset of [a, b] then Q = �V is called an upward polyblock
(or reverse polyblock) with vertex set V. By Proposition 3, �V = ∪z∈V[z, b]. A vertex
z of an upward polyblock is called proper if there is no vertex z′ �= z “dominated" by
z, i.e., such that z′ ≤ z. An improper vertex or improper element of V is an element of
V which is not a proper vertex. Obviously, an upward polyblock is fully determined
by its proper vertex set; more precisely, an upward polyblock is the upward hull of its
proper vertices.

Proposition 4

(1) The intersection of finitely many polyblocks is a polyblock.
(2) The intersection of finitely many upward polyblocks is an upward polyblock.

Proof For any two vectors z, y ∈ R
n we write u = z ∧ y if ui = min{zi, yi}, i =

1, . . . , n, and v = z ∨ y if vi = max{zi, yi}, i = 1, . . . , n. If V1, V2 are the vertex sets
of two polybocks P1, P2, respectively, then P1 ∩ P2 = (∪z∈V1 [a, z]) ∩ (∪y∈V2 [a, y]) =
∪z∈V1,y∈V2 [a, z]∩ [a, y] = ∪z∈V1,y∈V2 [a, z∧y]. Thus, P1∩P2 is a polyblock of vertex set
{z∧y| z ∈ V1, y ∈ V2}. Similarly, if V1, V2 are the vertex sets of two upward polyblocks
Q1, Q2, respectively, then Q1 ∩Q2 = ∪z∈V1,y∈V2 [z, b] ∩ [y, b] = ∪z∈V1,y∈V2 [z∨ y, b], so
Q1 ∩Q2 is an upward polyblock with vertex set {z ∨ y| z ∈ V1, y ∈ V2}. �

Proposition 5

(1) The maximum of an increasing function f (x) over a polyblock is achieved at a
proper vertex of this polyblock.

(2) The minimum of an increasing function f (x) over an upward polyblock is achieved
at a proper vertex of this upward polyblock.

Proof We prove (1). Let x̄ be a maximizer of f (x) over a polyblock P. Since a poly-
block is the downward hull of its proper vertices, there exists a proper vertex z of P



J Glob Optim (2007) 38:527–554 531

such that x̄ ∈ [a, z]. Then f (z) ≥ f (x̄) because z ≥ x̄, so z must be also an optimal
solution. The proof of (2) is similar. �

As usual, ei denotes the ith unit vector of R
n, i.e., ei ∈ R

n, ei
i = 1, ei

j = 0 ∀j �= i.

Proposition 6

(1) If a < x < b, then the set [a, b] \ (x, b] is a polyblock with vertices

ui = b+ (xi − bi)ei, i = 1, . . . , n. (3)

(2) If a < x < b, then the set [a, b] \ [a, x) is an upward polyblock with vertices

vi = a+ (xi − ai)ei, i = 1, . . . , n.

Proof We prove (1). Let Ki = {z ∈ [a, b]| xi < zi}. Since (x, b] = ∩i=1. ... ,nKi, we have
[a, b] \ (x, b] = ∪i=1, ... ,n([a, b] \Ki), proving the assertion because [a, b] \Ki = {z| ai ≤
zi ≤ xi, aj ≤ zj ≤ bj ∀j �= i} = [a, ui]. The proof of (2) is similar. �

Note that u1, . . . , un are the n vertices of the hyperrectangle [x, b] that are adjacent
to b, while v1, . . . , vn are the n vertices of the hyperrectangle [a, x] that are adjacent
to a.

3 Bilevel programming and monotonic optimization

The General Bilevel Nonlinear Programming Problem we are concerned with can be
formulated as follows

min F(x, y) s.t.
g1(x, y) ≤ 0, x ∈ R

n1+ , y solves
(R(x)) min

{
d(y)| g2(C(x), y) ≤ 0, y ∈ R

n2+
}

,
(GBP)

where it will be assumed that
(A1) The mapping C: R

n1 → R
m and the functions F(x, y), d(y), g1(x, y), g2(u, y)

are continuous.
(A2) The set D:= {(x, y) ∈ R

n1+ × R
n2+ | g1(x, y) ≤ 0, g2(C(x), y) ≤ 0, is nonempty

and compact.
(A3) For every fixed y, g2(u, y) is a decreasing function of u; for every fixed x ∈ R

n1+
the second level problem R(x) is solvable.

While Assumptions (A1) and (A2) are natural, Assumption (A3) may require
some comments. The first proposition of Assumption (A3) means that the function
g2(C(x), y) decreases when the action C(x) of the leader increases (component-wise).
By replacing u with v = −u, if necessary, this assumption also holds when g2(C(x), y)

increases with C(x). As for the second proposition of (A3), it is a quite common
assumption in bilevel programming. In practice, one can always make it hold by add-
ing the condition g2(C(x), y) ≤ 0 to the constraint on the leader, i.e., by replacing
g1(x, y) ≤ 0 with

max{g1(x, y), g2(C(x), y)} ≤ 0.
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So far the best known particular case of (GBP) is the BLP Problem:

min L(x, y) s.t.
A1x+ B1y ≥ c1, x ∈ R

n1+ , y solves
min

{〈d, y〉| A2x+ B2y ≥ c2, y ∈ R
n2+

}
,

(BLP)

where L(x, y) is a linear function, d ∈ R
n2 , Ai ∈ R

mi×n1 , Bi ∈ R
mi×n2 , ci ∈ R

mi , i = 1, 2.
In this case g1(x, y) = maxi=1, ... ,m1(c

1−A1x−B1y)i ≤ 0, g2(u, y) = maxi=1, ... ,m2(c
2−

u− B2y)i ≤ 0, while C(x) = A2x.
Clearly all Assumptions (A1), (A2), and (A3) hold provided the set D := {(x, y) ∈

R
n1+ × R

n2+ | A1x+ B1y ≥ c1, A2x+ B2y ≥ c2} is a nonempty polytope (then for every
fixed x ≥ 0 satisfying A1x+B1y ≥ c1 the set {y ∈ R

n2+ |A2x+B2y ≥ c2} is compact, so
R(x) is solvable).

Note that even (BLP) is an NP-hard nonconvex global optimization problem (see,
e.g. (18)). Some other particular cases of (GBP), when the second level problem
(R(x)) is convex, have been considered in (22–24). One important example of this
class is the following minimum norm bilevel programming problem which appears in
transportation planning applications (see, e.g. (11)):

minx ‖y(x)− c‖2 s.t.
x ∈ X, y(x) solves

(R(x)) min{d(y)| y ∈ �(x)},
where X and �(x), for every fixed x, are polytopes in R

n+, while d(y) is a convex
function.

We now show that (GBP) is in fact a monotonic optimization problem.
In view of Assumptions (A1) and (A2) the set {(C(x), d(y))| (x, y) ∈ D} is compact,

so without loss of generality we can assume that this set is contained in some box
[a, b] ⊂ R

m+1+ :
a ≤ (C(x), d(y)) ≤ b ∀(x, y) ∈ D. (4)

Let

U = {u ∈ R
m| (∃(x, y) ∈ D) u ≥ C(x)}, (5)

W = {(u, t) ∈ R
m × R| ∃(x, y) ∈ D, u ≥ C(x), t ≥ d(y)} (6)

and define

θ(u) = min{d(y)| (x, y) ∈ D, u ≥ C(x)}, (7)

f (u, t) = min{F(x, y)| (x, y) ∈ D, u ≥ C(x), t ≥ d(y)}. (8)

Proposition 7

(1) The function θ(u) is finite for every u ∈ U and satisfies: θ(u′) ≤ θ(u) whenever
u′ ≥ u ∈ U.

(2) The function f (u, t) is finite on the set W. If (u′, t′) ≥ (u, t) ∈ W then (u′, t′) ∈ W
and f (u′, t′) ≤ f (u, t).

(3) u ∈ U for every (u, t) ∈W.

Proof (1) If u ∈ U then there exists (x, y) ∈ D such that C(x) ≤ u, hence θ(u) < +∞.
It is also obvious that u′ ≥ u ∈ U implies θ(u′) ≤ θ(u).
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(2) By Assumption (A2), the set D of all (x, y) ∈ R
n1+ × R

n2+ satisfying g1(x, y) ≤
0, g2(C(x), y) ≤ 0 is nonempty, compact. Then for every (u, t) ∈ W the feasible
set of the problem determining f (u, t) is nonempty, compact, hence f (u, t) < +∞
because F(x, y) is continuous by (A1). Furthermore, if (u′, t′) ≥ (u, t) ∈ W then
obviously (u′, t′) ∈W, and f (u′, t′) ≤ f (u, t).

(3) Obvious. �

In addition to (A1), (A2), and (A3), we now make a further assumption:
(A4) The function θ(u) is continuous on intU, while f (u, t) is continuous on intW.

Proposition 8 If all the functions F(x, y), g1(x, y), g2(C(x), y), d(y) are convex then
Assumption (A4) holds, with θ(u), f (u, t) being convex functions.

Proof Observe that if θ(u) = d(y) for x satisfying g2(C(x), y) ≤ 0, C(x) ≤ u, and
θ(u′) = d(y′) for x′ satisfying g2(C(x′), y′) ≤ 0, C(x′) ≤ u′, then g2(C(αx + (1 −
α)x′), αy + (1 − α)y′) ≤ αg2(C(x), y) + (1 − α)g2(C(x′), y′), and C(αx + (1 − α)x′) ≤
αC(x) + (1 − α)C(x′) ≤ αu + (1 − α)u′, so that (αx + (1 − α)x′, αy + (1 − α)y′) is
feasible to the problem determining θ(αu + (1 − α)u′), hence θ(αu + (1 − α)u′) ≤
d(αy+(1−α)y′) ≤ αd(y)+(1−α)d(y′) = αθ(u)+(1−α)θ(u′). Therefore, the function
θ(u) is convex, and hence continuous on intU. The convexity and hence, the continuity
of f (u, t) on intW is proved similarly. �

Corollary 1 The set

G = {(u, t) ∈ [a, b]| t − θ(u) ≤ 0}

is downward and closed, while ∂G+ ⊂ {(u, t) ∈ [a, b]| t − θ(u) = 0}.

Proof The function (u, t) �→ t−θ(u) is increasing on the box [a, b] since it is increasing
on W ∩ [a, b] and equals −∞ for (u, t) ∈ [a, b] \W. (Note that always b ∈W). �

Proposition 9 The problem (GBP) is equivalent to the monotonic optimization
problem

min{f (u, t)| (u, t) ∈ G} (Q)

in the sense that min (GBP)= min(Q) and if (ū, t̄) solves (Q) then any optimal solution
(x̄, ȳ) of the problem

min{F(x, y)| g1(x, y) ≤ 0, g2(ū, y) ≤ 0, ū ≥ C(x), t̄ ≥ d(y), x ≥ 0, y ≥ 0}

solves (GBP).

Proof If (x, y) is feasible to (GBP) then g1(x, y) ≤ 0, g2(C(x), y) ≤ 0 and taking
u = C(x), t = d(y) = θ(C(x)) we have (u, t) ∈ G, hence

F(x, y) ≥ min
{
F(x′, y′)| g1(x

′, y′) ≤ 0, g2(C(x′), y′) ≤ 0,

u ≥ C(x′), t ≥ d(y′), x′ ≥ 0, y′ ≥ 0
}

= f (u, t) ≥ min{f (u′, t′)| (u′, t′) ∈ G} = min (Q).
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Conversely, if (u, t) ∈ G, i.e., t ≤ θ(u), then the inequalities u ≥ C(x), t ≥ d(y) imply
d(y) ≤ t ≤ θ(u) ≤ θ(C(x)), hence

f (u, t) = min{F(x, y)| g1(x, y) ≤ 0, g2(C(x), y) ≤ 0,

u ≥ C(x), t ≥ d(y), x ≥ 0, y ≥ 0}
≥ min{F(x, y)| g1(x, y) ≤ 0, g2(C(x), y) ≤ 0, θ(C(x)) ≥ d(y)}
= min(GBP).

Consequently, min (GBP) = min (Q). The last assertion of the proposition obviously
follows. �

Remark 1 As seen from the above proof, (GBP) can be reformulated as

min{F(x, y)| g1(x, y) ≤ 0, g2(C(x), y) ≤ 0, θ(C(x))− d(y) ≥ 0},
where the function (x, y) �→ θ(C(x))− d(y) is the composition of the decreasing func-
tion (u, t) �→ θ(u)−t with u = C(x), t = d(y). Therefore, the constraint θ(C(x))−d(y) ≥
0 is a composite monotonic constraint of the type considered in (37), and (GBP) can
be solved by the method developed in that paper.

4 Polyblock approximation

For convenience of notation let us set

z = (u, t) ∈ R
m+1, ϕ(z) = t − θ(u). (9)

We then have a continuous increasing function ϕ(z) such that G = {z ∈ [a, b]| ϕ(z) ≤
0}, and the problem (Q) can be rewritten as

min{f (z)| z ∈ G}. (Q)

For solving this monotonic optimization problem one possible method is to use
polyblock approximation, as developed in (32).

If ϕ(a) > 0, i.e. a /∈ G then G∩[a, b] = ∅ and the problem is infeasible. On the other
hand, if ϕ(b) := bm+1 − θ(b1, . . . , bm) = 0 then b ∈ G, and since f (z) is decreasing b
is a global optimal solution. Barring these trivial cases, we can thus assume

ϕ(a) ≤ 0 < ϕ(b). (10)

Now to solve (Q) by polyblock approximation we start from the initial polyblock
P1 = [a, b].

Since the polyblock P1 ⊃ G is an outer approximation of the feasible set G ⊂ [a, b],
the minimum of the objective function f (z) over P1 gives a lower bound for the opti-
mal value of (Q). But, since f (z) is decreasing, its minimum over P1 must be achieved
at some proper vertex of P1. Thus, if V1 denotes the vertex set of P1 and

v1 ∈ argmin{f (z)| z ∈ V1},
then f (v1) ≤ min{f (x)| x ∈ G}. If it so happens that v1 ∈ G then v1 solves problem
(Q). On the other hand, if v1 /∈ G then we construct as follows a new polyblock,
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smaller than P1, excluding v1 but still containing G. Let w1 = πa(v1) (see (1)), i.e.
w1 = v1 − α1(v1 − a) where

α1 = min{α| v1 − α(v1 − a) ∈ G}. (11)

Then w1 ∈ ∂+G, so no point of G can be found in the cone K1 = {z ∈ R
m+1+ | z > w1}.

Noting that P1 ⊃ G, we infer that P1\K1 ⊃ G, i.e. the polyblock P2 = P1\K1 =
P1 ∩ ([a, b] \ K1) still contains all feasible points of interest, in particular, it still con-
tains at least a global optimal solution. To compute the proper vertex set V2 of P2 we
use the following proposition established in (33).

For any two vectors v, v′ ∈ V1 define J(v, v′) := {j| vj > v′j}.
Proposition 10 Let V1 be the proper vertex set of P1, and V∗1 = {v ∈ V1| v > w1}. Then
the vertex set of the polyblock P2 = P1 \K1 is

V′2 = (V1 \ V∗1 ) ∪ {vi = v+ (w1
i − vi)ei| i = 1, . . . , m+ 1, v ∈ V∗1 }. (12)

The proper vertex set V2 of P2 is obtained by removing from V′2 all those vi = v+ (w1
i −

vi)ei with v ∈ V∗1 , such that J(v, v′) = {i} for some v′ ∈ V1 satisfying v′ ≥ w1.

Proof See (33). �

Thus, while loosing no better solution than the current best feasible solution, the poly-
block P2 with proper vertex set V2 is smaller than P1 because it has excluded v1 along
with all points in P2 ∩ K1. At this point observe that if we already know a feasible
solution v̄1 then any vertex v ∈ V2 such that f (v) ≥ f (v̄1) can be removed, since, f (.)
being decreasing, no better solution than v̄1 can be found in [v, b]. To simplify the
notation, denote the set that remains from V2 after all this pruning operation again
by V2 and the corresponding polyblock again by P2. Since P2 still contains at least
a global optimal solution, the above procedure can be repeated with P2 in place of
P1, and so on. Continuing this way we will generate a nested sequence of polyblocks
P1 ⊃ P2 ⊃ · · · , containing G (or a subset of G including at least a global optimal
solution) and approximating this set more and more closely. It can be proved that if

(∃ρ > 0) (∀z /∈ G) ‖z− a‖ > ρ

(a mild condition which can easily be made to hold) then, whenever the procedure is
infinite we have

f (vk) := min{f (v)| v ∈ Pk} ↗ min{f (z)| z ∈ G}.
On the other hand, if at some iteration k it so happens that vk = wk then vk is feasible,
hence optimal; also, if Vk = ∅ this means that no better feasible solution than the
current incumbent exists, hence the latter is optimal.

5 Branch-reduce-and-bound method

Like most outer approximation procedures, the above polyblock approximation algo-
rithm is easily implementable but practical only for problems (Q) with small values
of m, typically m ≤ 5. For problems with larger values of m a method of branch and
cut type, called BRB method, that has been developed in (32) and refined in (36), is
more suitable. We next describe this method.
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As the name indicates, the BRB method proceeds according to the standard branch
and bound scheme with three basic operations: branching, reducing (the partition sets)
and bounding.

(1) Branching consists in a successive rectangular partition of the initial box M0 =
[a, b] ⊂ R

m×R, following a chosen subdivision rule. As will be explained shortly,
branching should be performed upon the variables u ∈ R

m, so the subdivision
rule is induced by a standard bisection upon these variables.

(2) Reducing consists in applying valid cuts to reduce the size of the current parti-
tion set M = [p, q] ⊂ [a, b]. The box [p′, q′] obtained from M as a result of the
cuts is referred to as a valid reduction of M.

(3) Bounding consists in estimating a valid lower bound β(M) for the objective
function value f (z) over the feasible portion contained in the valid reduction
[p′, q′] of a given partition set M = [p, q].

Throughout the sequel, for any vector z = (u, t) ∈ R
m × R, we define ẑ = u.

5.1 Branching

Since an optimal solution (u, t) of the problem (Q) must satisfy t = θ(u), it suffices
to determine the values of the variables u in an optimal solution. This suggests that
instead of branching upon z = (u, t) as usual, we should branch upon u, accord-
ing to the standard bisection rule. Specifically, given a box M = [p, q], we select
r ∈ {1, . . . , m} such that qr − pr = max{qi − pi| i = 1, . . . , m}, and bisect M by the
hyperplane ur = 1

2 (pr + qr), thus generating two subboxes:
[

p, q− 1
2
(qr − pr)er

]
,

[
p+ 1

2
(qr − pr)er, q

]
.

As is well known (see, e.g. (28)) this subdivision method has the important property
that for any infinite nested sequence Mk = [pk, qk], k = 1, 2, . . . , such that each Mk+1
is one of the two subboxes of Mk via the bisection we have limk→+∞(q̂k − p̂k) = 0.

5.2 Valid reduction

At a given stage of the BRB algorithm for (Q), a feasible point z̄ ∈ G is available
which is the best so far known. Let γ = f (z̄) and let [p, q] ⊂ [a, b] be a box generated
during the partitioning procedure which is still of interest. Since an optimal solution
of (Q) is attained at a point satisfying ϕ(z) := t − θ(u) = 0, the search for a feasible
solution of (Q) in [p, q] such that f (z) ≤ γ can be restricted to the set Bγ ∩[p, q], where

Bγ := {z| f (z)− γ ≤ 0, ϕ(z) ≤ 0 ≤ ϕ(z)}. (13)

The reduction operation aims at replacing the box [p, q] with a smaller box [p′, q′] ⊂
[p, q] without losing any point y ∈ Bγ ∩ [p, q], i.e., such that

Bγ ∩ [p′, q′] = Bγ ∩ [p, q].
The box [p′, q′] satisfying this condition is referred to as a γ -valid reduction of [p, q]
and denoted by redγ [p, q].

First of all, since the points (u, t) of interest in [p, q] must satisfy t = θ(u), hence
θ(q̂) ≤ t ≤ θ(p̂), by making the substitution θ(q̂) ← pm+1, θ(p̂) ← qm+1 wherever
necessary, we can assume that
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pm+1 ≥ θ(q̂), qm+1 ≤ θ(p̂). (14)

Recall that ei denotes the ith unit vector of R
m+1, i.e., ei ∈ R

m+1, ei
i = 1, ei

j =
0 ∀j �= i.

Proposition 11

(1) If ϕ(q) < 0 or f (q)− γ > 0, then Bγ ∩ [p, q] = ∅, i.e., redγ [p, q] = ∅.
(2) If ϕ(q) ≥ 0 and f (q) ≤ γ , then redγ [p, q] = [p′, q′] where

q′ = p+
m+1∑

i=1
βi(qi − pi)ei with (15)

βi = max {β| 0 < β ≤ 1, ϕ (p+ β (qi − pi) ei) ≤ 0} , (16)

p′ = q′ −
m+1∑

i=1
αi(q′i − pi)ei with (17)

αi = max{α| 0 < α ≤ 1, ϕ(q′ − α(q′i − pi)ei) ≥ 0,

f (q′ − α(q′i − pi)ei) ≤ γ }. (18)

Proof

(1) If f̃ (q) := min{γ − f (q), ϕ(q)} < 0, then, since f̃ (z) is increasing, f̃ (z) ≤ f̃ (q) < 0
for every z ∈ [p, q]. Similarly, if ϕ(p) > 0, then ϕ(z) > 0 for every z ∈ [p, q]. In
both cases, Bγ ∩ [p, q] = ∅.

(2) Let z ∈ [p, q] satisfy f (z) ≤ γ and ϕ(z) = 0. If z �≤ q′ then there is i ∈
{1, . . . , m + 1} such that zi > q′i = pi + βi(qi − pi), i.e., zi = pi + β(qi − pi)

with β > βi and from (16) it follows that ϕ(p + β(qi − pi)ei) > 0, which im-
plies that ϕ(z) > 0, conflicting with z ∈ Bγ . Similarly, if z �≥ p′ then there is
i ∈ {1, . . . , m+1} such that zi < p′i = q′i−αi(q′i−pi), i.e., zi = q′i−α(q′i−pi) with
α > αi. In view of (18), this implies that either ϕ(z) ≤ ϕ(q′ − α(q′i − pi)ei) < 0,
conflicting with ϕ(z) = 0, or that f (z) ≥ f (q′ − α(q′i − pi)ei) > γ , conflicting
with f (z) ≤ γ . Thus, any z ∈ [p, q] such that f (z) ≤ γ , ϕ(z) = 0 must satisfy
p′ ≤ z ≤ q′, as was to be proved. �

Remark 2 It can easily be verified that the box [p′, q′] = redγ [p, q] still satisfies
ϕ(q′) ≥ 0, f (q′) ≤ γ .

5.3 Valid bounds

Let M := [p, q], be a partition set which is supposed to have been reduced, so that
according to Remark 2:

ϕ(q) ≥ 0, f (q) ≤ γ .

Let us now examine how to compute a lower bound β(M) for

min{f (z)| z ∈ [p, q], ϕ(z) = 0}.
Since f (z) is decreasing, an obvious lower bound is f (q). We will shortly see that to
ensure convergence of the BRB Algorithm, it suffices that the lower bounds satisfy

β(M) ≥ f (q). (19)
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We shall refer to such a bound as a valid lower bound.
As in the proof of Proposition 11 let f̃ (z) = min{γ − f (z), ϕ(z)}. Define

G = {z ∈ [p, q]| ϕ(z) ≤ 0}, H̃ = {z ∈ [p, q]| f̃ (z) ≥ 0}. (20)

If ϕ(q) = 0 ≤ f̃ (q), then obviously q is an exact minimizer of f (z) over the feasible
points in [p, q] at least as good as the current best, and can be used to update the
current best solution.

Suppose now that ϕ(p) < 0, f̃ (q) ≥ 0, i.e., p ∈ G, q ∈ H̃.
For each z ∈ [p, q] such that z ∈ H̃ \ G let πp(z) be, as previously, the first point

where the line segment from z to p meets the upper boundary of G; that is, let

πp(z) = z− ᾱ(z− p) with
ᾱ = min{α| ϕ(z− α(z− p)) ≤ 0}. (21)

Obviously, ϕ(πp(z)) = 0.

Lemma 1 If v = πp(q), vi = q− (qi− vi)ei, i = 1, . . . , m+ 1, and I = {i| vi ∈ H̃}, then
a valid lower bound over M = [p, q] is

β(M) = min{f (vi)| i ∈ I}
= min{f (u, t)| g1(x, y) ≤ 0,

g2(ûi, y) ≤ 0, (C(x), d(y)) ≤ vi (i ∈ I), x ≥ 0, y ≥ 0}.
Proof This follows since the polyblock with vertices vi, i ∈ I, contains all feasible
z = (u, t) still of interest in [p, q]. �

Remark 3 Each box Mi := [vi, q] can be reduced by the method presented above. If
[p′i, q′i] = red[vi, q], i = 1, . . . , m+ 1, then without much extra effort, we can have a
more refined lower bound, namely

β(M) = min
i∈I

f (q′i), I = {i| vi ∈ H̃}.

The above procedure amounts to constructing a polyblock Z ⊃ Bγ ∩ [p, q] = G ∩ H̃,
which is possible because G is a downward and H̃ an upward set. To have a tighter
lower bound, one can even construct a sequence of polyblocks Z1 ⊃ Z2, . . . , approx-
imating the set Bγ ∩ [p, q] more and more closely. In principle, with the polyblock
approximation procedure described in Sect. 3, it is possible to obtain a bound as
tight as desired. Since, however, the computation cost increases rapidly with the accu-
racy requirement, a trade-off must be made, so practically just one approximating
polyblock as in the above Lemma is used.

5.4 Algorithm and convergence

We are now in a position to state the proposed algorithm for (Q).
Recall that the problem is min{f (z)| z ∈ [a, b], ϕ(z) = 0} and we assume (A1)–

(A4), so always b ∈W, b̂ = (b1, . . . , bm) ∈ U, and (b̂, θ(b̂)) yields a feasible solution.

Basic BRB algorithm for (Q)

Step 0 Start with P1 = {M1}, M1 = [a, b], R1 = ∅. Let CBS be the best feasible solu-
tion available and CBV (current best value) the corresponding value of f (z). (At least
CBV = f (b̂, θ(b̂))). Set k = 1.
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Step 1 For each box M ∈ Pk and for γ = CBV:

(1) Compute the γ -valid reduction redγ M of M.
(2) Delete M if redγ M = ∅.
(3) Replace M by redγ M if redγ M �= ∅.
(4) If redγ M = [p, q] then compute a valid lower bound β(M) for f (z) over the

feasible solutions in M.

Step 2 Let P ′k be the collection of boxes that results from Pk after completion of
Step 1. Update CBS and CBV. From Rk remove all M ∈ Rk such that β(M) ≥ CBV
and let R′k be the resulting collection. Let Mk = R′k ∪ P ′k.

Step 3 If Mk = ∅ then terminate: CBV is the optimal value and CBS (the feasible
solution z̄ with f (z̄) = CBV) is an optimal solution.

Step 4 If Mk �= ∅, select Mk ∈ argmin{β(M)|M ∈Mk}. Divide Mk into two subboxes
by the standard bisection. Let Pk+1 be the collection of these two subboxes of Mk.

Step 5 Let Rk+1 =Mk \ {Mk}. Increment k and return to Step 1.

Proposition 12 Whenever infinite, the BRB Algorithm generates an infinite filter of
boxes {Mkl } whose intersection yields a global optimal solution.

Proof If the algorithm is infinite, it generates at least an infinite nested sequence
of boxes Mkν

, ν = 1, 2, . . . For simplicity we write Mν for Mkν
. Let Mν = [pν , qν].

The subdivision method ensures that ∩+∞
ν=1[p̂ν , q̂ν] = ū ∈ R

m. Furthermore, it can be
assumed that θ(q̂ν) ≤ pν

m+1 ≤ qν
m+1 ≤ θ(p̂ν) (see (14)), so limν→+∞ pν

m+1 = θ(ū), and
∩∞l=1Mkl = {z∗}. Since Mkl = [pkl , qkl ] with ϕ(pkl ) ≤ 0 ≤ ϕ(qkl ), and z∗ = lim pkl =
lim qkl , it follows that ϕ(z∗) ≤ 0 ≤ ϕ(z∗), i.e., z∗ is a feasible solution. Furthermore,

f (pkl ) ≥ β(Mkl ) ≥ f (qkl ),

whence liml→+∞ β(Mkl ) = f (z∗). On the other hand, since Mkl corresponds to the
minimum of β(M) among the current set of boxes, we have β(Mkl ) ≤ min{f (z)| z ∈
G ∩ [a, b]} and, consequently,

f (z∗) ≤ min{f (z)| z ∈ G ∩ [a, b]},
proving that z∗ is an optimal solution. �

6 Implementation issues

In this section, we discuss the main operations involved in the selection of the ini-
tial box, the reduction and the bounding operations. Note that when the functions
F(x, y), g1(x, y), g2(u, y), d(y) are convex, and C(x) is affine, the subproblems of com-
puting θ(u), f (u, t) are convex and can be solved by efficient algorithms.

6.1 Initial box

From (4) and (14) the initial box [a, b] ⊂ R
m+1 can be determined as follows:

ai = min{Ci(x)| (x, y) ∈ D} (i = 1, . . . , m), am+1 = θ(b̂),

bi = max{Ci(x)| (x, y) ∈ D} (i = 1, . . . , m), bm+1 = θ(â).



540 J Glob Optim (2007) 38:527–554

where â = (a1, . . . , am), b̂ = (b1, . . . , bm),

D = {(x, y) ∈ R
n1+ × R

n2+ | g1(x, y) ≤ 0, g2(C(x), y) ≤ 0}.
6.2 Reduction operation

To simplify certain formulations it is convenient to write s = m+1 and â = (a1, . . . , am)

for any a = (a1, . . . , am, as) ∈ R
s. In each iteration of Polyblock approximation, the

following operation is needed (see (11), (21)): given a point z = (u, t) ∈ [a, b] \ G
compute the point πa(z) = z − ᾱ(z − a) such that z − ᾱ(z − a) ∈ ∂+G. Setting
t(α) = t − α(t − as), u(α) = u− α(u− â) one has

ᾱ = max{α| t(α)− θ(u(α)) ≥ 0}.
Since t(α) − θ(u(α)) is a decreasing function of one variable α ∈ [0, 1], one way to
compute ᾱ is to proceed by Bolzano bisection. However since θ(u + α(u − â)) is the
optimal value of an optimization problem (see (7)), this method would require solving
the latter problem for some sequence of values of α. A more efficient way to compute
ᾱ is furnished by the next proposition.

Proposition 13 For any z = (u, t) ∈ [a, b]\G the number ᾱ such that πa(z) = z−ᾱ(z−a)

is equal to the optimal value of the program

maxx,y,α α

s.t.

∣
∣
∣
∣
∣
∣

d(y) ≤ t(α), C(x) ≤ u(α),
g2(C(x), y) ≤ 0,
x ≥ 0, y ≥ 0, 0 ≤ α ≤ 1.

(22)

Proof Denote the optimal value of (22) by α̃. If t(α) − θ(u(α)) ≥ 0, then for x ∈
R

n1+ , y ∈ R
n2+ such that g2(C(x), y) ≤ 0, C(x) ≤ u(α), d(y) = θ(u(α)) one has t(α) −

d(y) = t(α)−θ(u(α)) ≥ 0, i.e., (x, y, α) satisfies the constraints of (22). Hence ᾱ ≤ α̃. On
the other hand, if (x̃, ỹ, α̃) solves (22) then d(ỹ) ≤ t(α̃), C(x̃) ≤ u(α̃), g2(C(x̃), ỹ) ≤ 0,
hence t(α̃)− θ(u(α̃)) ≥ t(α̃)−d(ỹ) ≥ 0. This shows that α̃ ≤ ᾱ, and hence, α̃ = ᾱ. �

Similarly, each of the numbers αi defined in (18) can be computed by solving a
suitable single optimization problem. Also observe that to have a valid reduction of
M = [p, q] we need only know how to compute αi, βi for i = 1, . . . , m. In fact, when
these numbers have been computed, then a valid reduction of M = [p, q] can be taken
to be redγ [p, q] = [p′, q′], with

q̂′ = p̂+
m∑

i=1

βi(qi − pi)ei, q′s = min{qs, θγ (p̂′)}, (23)

p̂′ = q̂′ −
m∑

i=1

αi(q′i − pi)ei, p′s = θγ (q̂′), (24)

where for every u ∈ [p, q] :
θγ (u) = min{d(y)| g2(u, y) ≤ 0, u ≥ C(x),

F(x, y) ≤ γ , x ∈ R
n1+ , y ∈ R

n2+ } (25)

(note that θγ (u) ≥ θ(u), so ϕ(q′) ≥ ϕγ (q′) := q′s − θγ (q̂′) ≥ 0, f (q′) ≥ γ ).
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Proposition 14 For i = 1, . . . , m we have

αi = maxx,y,α α

s.t.

∣
∣
∣
∣
∣
∣
∣
∣

F(x, y) ≤ γ

g1(x, y) ≤ 0, g2(C(x), y) ≤ 0
q̂′ − α(q′i − pi)êi ≥ C(x), q′s ≥ d(y),
x ≥ 0, y ≥ 0, 0 ≤ α ≤ 1.

(26)

Proof Let ui(α)= q̂′−α(q′i−pi)êi. If (x, y, α) satisfies (26), then clearly f (ui(α), q′s) ≤ γ .
Furthermore, q′s ≥ d(y) ≥ θγ (C(x)) ≥ θγ (ui(α)), hence ϕγ (q′ − α(q′i − pi)ei) ≥ 0.

Conversely, if 0 ≤ α ≤ 1 and ϕγ (q′ − α(q′i − pi)ei) ≥ 0, f (q′ − α(q′i − pi)ei) ≤ γ ,
i.e., q′s − θγ (ui(α)) ≥ 0, f (ui(α), q′s) ≤ γ , then for x, y ≥ 0 such that g1(x, y) ≤
0, g2(C(x), y) ≤ 0, C(x) ≤ ui(α), d(y) ≤ q′s, and F(x, y) = f (ui(α), q′s) we have
F(x, y) ≤ γ , hence (x, y, α) satisfies (26). �

The computation of the exact value of βi, i = 1, . . . , m, in (18) is more involved,
so instead of βi we compute an approximate value β̄i such that β̄i ≥ βi. The latter
condition ensures that the box [p′, q′] obtained that way will still be a valid reduction
of [p, q], while β̄i can be computed by solving a single program, as shown by the
following proposition.

Proposition 15 Let ε > 0. For i = 1, . . . , m we have

βi ≤ β̄i = minx,y,β β

s.t.

∣
∣
∣
∣
∣
∣

g2(C(x), y) ≤ 0, C(x) ≤ p̂+ β(qi − pi)êi,
ps ≥ d(y)+ ε,
x ≥ 0, y ≥ 0, 0 ≤ β ≤ 1.

(27)

Furthermore, β̄i → βi as ε ↘ 0.

Proof Let (x̄, ȳ, β̄i) solve the problem (27). If β̄i = 1 then obviously βi ≤ β̄i. Otherwise,
letting ui(βi) = p̂ + β(qi − pi)êi we show that ps − θγ (ui(β̄i)) = ε. Indeed, since
θγ (u) is decreasing, if ps − θγ (ui(β̄i)) > ε, then with β < β̄i one could still have
ps − θγ (ui(β)) ≥ ε, i.e., there would exist x ∈ R

n1+ , y ∈ R
n2+ satisfying F(x, y) ≤

γ , g2(C(x), y) ≤ 0, C(x) ≤ ui(β), ps ≥ d(y) + ε, conflicting with β̄i being the small-
est of all such β. Since ϕγ (ui(βi), ps) ≤ 0 < ε = ϕγ (ui(β̄i), ps), while the function
β �→ ϕγ (ui(β), ps) is increasing it follows that βi ≤ β̄i. Furthermore, as ε → 0, if
β̄i → β ′i > βi then by continuity ϕγ (ui(β̄i), ps) → ϕγ (ui(β ′i ), ps) > 0, conflicting with
ϕγ (ui(β̄i), ps) = ε→ 0. Therefore, β̄i → βi. �

Remark 4 If ϕγ (pi) = 0 then obviously βi = 1 so β̄i = 0. In practice, in the computa-
tion of β̄i one can take, e.g., ε = 0.01(qi − pi).

For Bilevel Convex Programs where F(x, y), g1(x, y), g2(u, y), d(y) are convex and
C(x) is affine (so that Assumptions (A1) through (A4) are satisfied), the above sub-
problems are convex programs. In the case of BLP these are linear programs, with

F(x, y) = L(x, y), d(y) = 〈d, y〉, C(x) = A2(x),

g1(x, y) = −A1x− B1y+ c1, g2(u, y) = −u− B2y+ c2,

D = {(x, y)| Aix+ Biy ≥ ci (i = 1, 2), x ≥ 0, y ≥ 0}.
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6.3 Lower bounding

By Proposition 12, the Basic BRB Algorithm converges provided the bounds are
valid, i.e., satisfy (19):

β(M) ≥ f (q).

The convergence speed depends, however, on the quality of the bounds and in most
cases, much better bounds can be computed by exploiting specific structures underly-
ing the problem. In Sect. 5.3 we already indicated a general bounding method based
on polyblock approximation. For problems where θγ (u) and f (u, t) are convex (e.g.,
for Bilevel Convex Programs, see Proposition 8), valid bounds can also be computed
by exploiting convexities. For example, in this case the function ϕγ (z) is concave and
if redγ M = [p′, q′] then we can assume ϕγ (q′) > 0 (for ϕγ (q′) = 0 would imply that
the minimum of f (z) over M is just f (q′)). From the definition of α1, . . . , αm, (see
Proposition 11) and q′s (see (24) and (23)), we have

ϕγ (q′ − αi(q′i − pi)ei) ≥ 0 (i = 1, . . . , m), ϕγ (q′ − θγ (q̂′)es) ≥ 0.

Therefore the set of all z ∈ [p′, q′] satisfying ϕγ (z) = 0 (i.e., the feasible portion in
[p, q]) is contained in the set

S =
{

z ∈ [p′, q′] | q′s − zs

q′s − θγ (q̂′)
+

m∑

i=1

(q′i − zi)/αi(q′i − pi) ≥ 1

}

.

That is, a valid lower bound for f (z) over the feasible portion in M, is the value
min{f (z)| z ∈ S}. But, since f (z) is decreasing, its minimum over S is attained at a point
z satisfying

q′s − zs

q′s − θγ (q̂′)
+

m∑

i=1

(q′i − zi)/αi(q′i − pi) = 1,

i.e., such that

zs = θγ (q̂′)+ (q′s − θγ (q̂′))
[

m∑

i=1

(q′i − zi)/αi(qi − pi)

]

.

Thus, a lower bound for f (z) over the feasible portion in [p, q] is the value

β(M) = min F(x, y) s.t.∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g1(x, y) ≤ 0, g2(C(x), y) ≤ 0,
u ≥ C(x), t ≥ d(y), x ≥ 0, y ≥ 0,
p′ ≤ (u, t) ≤ q′,

t = θγ (q̂′)+ (q′s − θγ (q̂′))
[

m∑

i=1
(q′i − ui)/αi(q′i − pi)

]

.

(28)

Note that β(M) ≥ f (q′), since f (q′) is the optimal value of the following relaxation of
(28):

min F(x, y) s.t.∣
∣
∣
∣
g1(x, y) ≤ 0, g2(C(x), y) ≤ 0,
q̂′ ≥ C(x), q′s ≥ d(y), x ≥ 0, y ≥ 0.
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Thus, for Bilevel Convex Programming a valid lower bound β(M) can be computed
by solving a convex program (a linear program in the case of (BLP)).

Remark 5 As we saw by Proposition 11, given any box M := [p, q] ⊂ [a, b], and the
current best value γ , if ϕγ (q) < 0 (in particular, if θ(q̂) = +∞, i.e., q̂ /∈ U), or if
f (q) > γ (in particular, if f (q) = +∞, i.e., q /∈W) then this box should be deleted.

During the process of the Basic BRB Algorithm, a box M = [p, q] is considered
only if ϕγ (q) ≥ 0 and f (q) ≤ γ . Let [p′, q′] = redγ [p, q] be determined according
to (14) and (26), (27). For Bilevel Convex Programs, all the subproblems involved
are convex (or linear in the case of (BLP)). A valid lower bound β(M) can then
be computed by solving the subproblem (28), and the algorithm proceeds further as
described in Sect. 5.4.

7 Discussion

7.1 Cases when the dimension can be reduced

Suppose that m > n1 while the mapping C satisfies

x′ ≥ x⇒ C(x′) ≥ C(x). (29)

In that case, the dimension of problem (Q) can be reduced. For this, define

θ(v) = min{d(y)| g2(C(v), y) ≤ 0, y ∈ R
n2+ }, (30)

f (v, t) = min{F(x, y)| g1(x, y) ≤ 0, g2(C(v), y) ≤ 0,

v ≥ x, t ≥ d(y), x ∈ R
n1+ , y ∈ R

n2+ }. (31)

It is easily seen that these functions are decreasing. Indeed, v′ ≥ v implies C(v′) ≥ C(v)

and hence g2(C(v′), y) ≤ 0, i.e., whenever v is feasible to (30) and v′ ≥ v then v is also
feasible. This shows that θ(v′) ≤ θ(v). Similarly, whenever (v, t) is feasible to (31) and
(v′, t′) ≥ (v, t) then (v, t) is also feasible, and hence f (v′, t′) ≤ f (v, t).

With θ(v) and f (v, t) defined that way, Proposition 9 remains true:

Proposition 16 Problem (GBP) is equivalent to

min{f (v, t)| t − θ(v) ≤ 0} (Q̃)

and if (v̄, t̄) solves (Q) then any optimal solution (x̄, ȳ) of the problem

min{F(x, y)| g1(x, y) ≤ 0, g2(C(x), y) ≤ 0, v̄ ≥ x, t̄ ≥ d(y), x ≥ 0, y ≥ 0}
solves (GBP).

Proof If (x, y) is feasible to (GBP) then g1(x, y) ≤ 0, g2(C(x), y) ≤ 0 and taking
v = x, t = d(y) = θ(x) we have t − θ(v) = 0, hence, setting G := {(v, t)| t − θ(v) ≤ 0}
yields

F(x, y) ≥ min{F(x′, y′)| g1(x
′, y′) ≤ 0, g2(C(x′), y′) ≤ 0,

v ≥ x′, t ≥ d(y′), x′ ≥ 0, y′ ≥ 0}
= f (v, t) ≥ min{f (v′, t′)| (v′, t′) ∈ G} = min ˜(Q).
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Conversely, if t − θ(v) ≤ 0, then the inequalities v ≥ x, t ≥ d(y) imply d(y) ≤ t ≤
θ(v) ≤ θ(x), hence

f (v, t) = min{F(x, y)| g1(x, y) ≤ 0, g2(C(v), y) ≤ 0,

v ≥ x, t ≥ d(y), x ≥ 0, y ≥ 0}
≥ min{F(x, y)| g1(x, y) ≤ 0, g2(C(x), y) ≤ 0,

θ(x) ≥ d(y), x ≥ 0, y ≥ 0}
= min(GBP).

Consequently, min(GBP)= min ˜(Q). The last assertion of the proposition follows. �

Thus, under assumption (29), (GBP) can be solved by the same method as previ-
ously, with v ∈ R

n1 as main parameter instead of u ∈ R
m. Since n1 < m, the method

will work in a space of smaller dimension.
More generally, if C is a linear mapping with rank C = r < m such that E = KerC

satisfies:
Ex′ ≥ Ex⇒ Cx′ ≥ Cx, (32)

then one can arrange the method to work basically in a space of dimension r rather

than m. In fact, by writing E = [EB, EN], x =
[

xB
xN

]
, where EB is an r× r nonsingular

matrix, we have, for every v = Ex :

x =
[

E−1
B
0

]
v+

[−E−1
B ENxN
xN

]
.

Hence, setting Z =
[

E−1
B
0

]
, z =

[−E−1
B ENxN
xN

]
yields

x = Zv+ z with Ez = −ENxN + ENxN = 0.

Since, in view of (32), Ez = 0 implies Cz = 0, it follows that Cx = C(Zv). Now, define

θ(v) = min{d(y)| g2(C(Zv), y) ≤ 0, y ∈ R
n2+ }, (33)

f (v, t) = min{F(x, y)| g1(x, y) ≤ 0, g2(C(Zv), y) ≤ 0,

v ≥ Ex, t ≥ d(y), x ∈ R
n1+ , y ∈ R

n2+ }. (34)

For any v′ ∈ R
r = E(Rn1), we have v′ = Ex′ for some x′, so v′ ≥ v implies that Ex′ ≥

Ex, hence, by (32), Cx′ ≥ Cx, i.e., C(Zv′) ≥ C(Zv), and therefore, g2(C(Zv′), y) ≤
g2(C(Zv), y) ≤ 0. It is then easily seen that θ(v′) ≤ θ(v) and f (v′, t′) ≥ f (v, t) for v′ ≥ v
and t′ ≥ t, i.e., both θ(v) and f (v, t) are decreasing. Furthermore, if (v̄, t̄) solves the
problem

min{f (v, t)| t − θ(v) ≤ 0} (35)

(so that, in particular, t̄ = θ(v̄)), and (x̄, ȳ) solves the problem (34) where v = v̄, t = t̄ =
θ(v̄), then, since v̄ ≥ Ex̄, we have θ(Ex̄) ≥ θ(v̄) ≥ d(ȳ). Noting that Zv̄ = ZEx̄ = x̄, this
implies that ȳ solves min{d(y)| g2(Cx̄, y) ≤ 0}, and consequently, (x̄, ȳ) solves (GBP).

Thus, under condition (32), (GBP) can be solved by solving (35) with θ(v), f (v, t)
defined as in (33) and (34).
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7.2 Relation to multiobjective programming

The close relationship between BLP and Multiobjective Linear Programming has
been noticed very early. However, many earliest results on this subject (1) were later
shown to be incorrect (6).

The equivalence between (BLP) and the problem of optimization over the effi-
cient set (OES) was established in (17) (see also (19)). We now prove the equivalence
between (GBP) and the general problem (OES).

First, given a mapping C : R
n → R

m, any problem

min{f (x)| x ∈ XE},
where X is a compact set in R

n, and XE denotes the efficient set of X relative to
V-minC(x) can be rewritten as the following special (GBP):

min f (y) s.t. y ∈ X solves min

{
m∑

i=1

Ci(x)| C(x) ≤ C(y), x ∈ X

}

.

Conversely, for any given (GBP), it is easy to see that if we define

C̃(x) =
(

C(x),−
m∑

i=1

Ci(x), d(y)

)

,

then (GBP) reduces to the following problem of constrained optimization over the
efficient set (37):

min{F(x, y)| g1(x, y) ≤ 0, (x, y) ∈ XE}, (36)

where X = {(x, y) ∈ R
n1+ × R

n2+ | g2(C(x), y) ≤ 0} and XE denotes the efficient set of X
relative to V-minC̃. Indeed, (x̄, ȳ) ∈ X is feasible to (GBP) if and only if g1(x̄, ȳ) ≤ 0,
and for any (x, y) ∈ X the relations

C(x) ≤ C(x̄), −
m∑

i=1

Ci(x) ≤ −
m∑

i=1

Ci(x̄), d(y) ≤ d(ȳ),

imply C(x) = C(x̄), d(y) = d(ȳ), which shows that (x, y) is an efficient point of X
relative to V-minC̃ and satisfying g1(x, y) ≤ 0.

A peculiar feature worth noting of the above problem (OES) is that any weakly
efficient point is efficient, while the functions C̃i(x), i = 1, . . . , m+ 2, are not linearly
independent. Therefore, it would be of interest to see how to solve (GBP) using the
Basic BRB Algorithm proposed in (37) for constrained optimization over the weakly
efficient set.

7.3 Specialization to (BLP)

As we saw in Sect. 3, the BLP problem

min L(x, y) s.t.
A1x+ B1y ≥ c1, x ∈ R

n1+ , y solves
min{〈d, y〉| A2x+ B2y ≥ c2, y ∈ R

n2+ },
(BLP)

fulfills the general assumptions formulated for (GBP), provided the set {(x, y) ∈
R

n1+ × R
n2+ | A1x+ B1y ≥ c1, A2x+ B2y ≥ c2} is a nonempty polytope,
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By specializing the basic operations to the case F(x, y) = L(x, y), d(y) = 〈d, y〉,
C(x) = A2x, while g1(x, y) = maxi=1, ... ,m1(c

1−A1x−B1y)i, g2(u, y) = maxi=1, ... ,m2(c
2−

u − B2y)i, with ci ∈ R
mi , i = 1, 2, the Basic BRB Algorithm formulated in Sect. 5.4

can be used to solve (BLP).
Define

A =
[

A1
A2

]
, B =

[
B1
B2

]
, c =

[
c1

c2

]
,

A1 =
⎡

⎣
A1,1
. . .

A1,m1

⎤

⎦ , A2 =
⎡

⎣
A2,1
. . .

A2,m1

⎤

⎦ ,

D = {(x, y)| Ax+ By ≥ c, x ≥ 0, y ≥ 0},

θ(u) = min{〈d, y〉| (x, y) ∈ D, u ≥ A2x}, z = (u, t),

f (z) = min{L(x, y)| (x, y) ∈ D, u ≥ A2x, t ≥ 〈d, y〉}.
• Initial box

The initial box [a, b] ⊂ R
m2+1 is defined by formula

ai = min{〈A2,i, x〉| (x, y) ∈ D}, i = 1, . . . , m2,

am2+1 = min{〈d, y〉| (x, y) ∈ D}
bi = max{〈A2,i, x〉| (x, y) ∈ D}, i = 1, . . . , m2,

bm2+1 = max{〈d, y〉| (x, y) ∈ D}.
• Reduction operation

Let z̄ = CBS and γ = f (z̄) = CBV. If M := [p, q] is any subbox of [a, b] still of
interest at a given iteration, then a valid reduction of M, written redγ M, is determined
as follows, where ϕγ (z) = t − θγ (u) for z = (u, t) :

(1) If ϕγ (q) < 0, or f (q) > γ then redγ M = ∅ (M is to be deleted);
(2) Otherwise, redγ M = [p′, q′] is determined by formulas (24), (23), where αi,

β̄i, i = 1, . . . , m, are computed as follows:

Computing β̄i, i = 1, . . . , m2 (see Proposition 15)

β̄i = minx,y,β β

s.t.

∣
∣
∣
∣
∣
∣

A2x+ B2y ≥ c2, (p1, . . . , pm2)+ β(qi − pi)ei ≥ A2x,
pm2+1 ≥ 〈d, y〉 + ε,
x ≥ 0, y ≥ 0, 0 ≤ β ≤ 1,

where ε > 0 is a small number, e.g., ε = 0.01(qi − pi).
Computing αi, i = 1, . . . , m2 :

αi = maxx,y,α α

s.t.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

L(x, y) ≤ γ

Ax+ By ≥ c
(q′1, . . . , q′m2

)− α(q′i − pi)ei ≥ A2x,
q′m2+1 ≥ 〈d, y〉,
x ≥ 0, y ≥ 0, 0 ≤ α ≤ 1.
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• Lower bounding

For any box M = [p, q] with redM = [p′, q′] a lower bound for f (z) over [p, q] is
β(M) = min{f (z)| z ∈ S}

min L(x, y)

= s.t.

∣
∣
∣
∣
∣
∣
∣
∣
∣

Ax+ By) ≥ c,
u ≤ A2x, t ≥ 〈d, y〉, x ≥ 0, y ≥ 0,
p′ ≤ (u, t) ≤ q′.
t = θγ (q̂′)+

(
q′m2+1 − θγ (q̂′)

) [∑m2
i=1(q

′
i − ui)/αi(q′i − pi)

]
,

where αi are defined as above.

8 Illustrative examples

To illustrate how the algorithm works we present some numerical examples. The algo-
rithm was coded in C++ and run on a PC Pentium IV 2.53 GHz, RAM 256 Mb DDR,
using CPLEX 8.0 for solving linear subproblems. Some details of computation are
shown for the three first examples. The last three examples 5–7, taken from (16), are
very simple problems that can be solved in next to no time by the present algorithm,
confirming or correcting an optimal solution indicated in (16).

Example 1 With tolerance 0.0001 solve the problem

min(x2 + y2) s.t.

x ≥ 0, y ≥ 0, y solves

min(−y) s.t.

3x + y ≤ 15,
x + y ≤ 7,
x + 3y ≤ 15.

This problem can be viewed as a (GBP) satisfying conditions (A1)–(A3), with n1 =
n2 = 1, m = 1, and

F(x, y) = x2 + y2, g1(x, y) = max{x+ y− 7, x+ 3y− 15},
d = −1, g2(C(x), y) = −C(x)+ y− 15, C(x) = −3x.

Here D = {(x, y) ∈ R
2+| 3x+ y ≤ 15, x+ y ≤ 7, x+ 3y ≤ 15},

θ(u) = min(−y) s.t.
(x, y) ∈ D,
−3x ≤ u,

f (u, t) = min(x2 + y2) s.t.
(x, y) ∈ D,
−3x ≤ u, −y ≤ t.
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Initialization

a1 = min{−3x| (x, y) ∈ D} = −15, b2 = θ(−15) = 0,

b1 = max{−3x| (x, y) ∈ D} = 0, a2 = θ(0) = −5.

Initial box M1 = [a, b], with a = (−15,−5), b = (0, 0). Lower bound over M1 :
β(M1) = 12.5; CBV = 25.

Iteration 1
M1 is divided into two boxes M11, M12.
M11 = [(−7.5,−5), (0, 0)], with

redM11 = [(−7.5,−5), (0,−4.166667)]; β(M11) = 22.5.
M12 = [(−15,−5), (−7.5, 0)], with

redM12 = [(−15,−4.166667), (−7.5, 0)]; β(M12) = 18.382353.
CBS = (2.5, 4.166667) with CBV = 23.611111.
M12 is selected (for further subdivision): reset M2 ←M12.

Iteration 2
Number of active nodes: 2.
CBV = 23.611111, minM{β(M)} = 18.382353
M2 is divided into two boxes M21, M22.
M21 = [(−11.25,−4.166667), (−7.5, 0)], with

redM21 = [(−11.25,−4.166667), (−7.5,−3.25)]; β(M21) = 23.410405.
M22 = [−(−15,−4.166667), (−11.25, 0)], with

redM22 = [(−15,−3.25), (−11.25, 0)]; β(M22) = 21.778351.
M22 is selected: reset M3 ←M22.

Iteration 3
Number of active nodes: 3.
CBV = 23.611111, minM{β(M)} = 21.778351
M3 is divided into two boxes: M31, M32.
M31 = [(−13.125,−3.25), (−11.25, 0)], with

redM31 = [(−13.125,−3.25), (−11.25,−1.875)]; β(M31) = 22.645548.
M32 = [−(−15,−3.25), (−13.125, 0)], with

redM32 = [(−15,−1.875), (−13.125, 0)], β(M12) = 22.5.
CBS = (4.375, 1.875) with CBV = 22.65625.
M32 is selected: reset M4 ←M32.
.
.
.
Iteration 10
Number of active nodes: 1.
CBV = 22.504340, minM{β(M)} = 22.5.
M10 is divided into two boxes: M101, M102.
M101 = [(−13.476563,−1.640625), (−13.359375,−1.406250)], with

redM101 = [(−13.476563,−1.640625), (−13.359375,−1.523438)];
β(M101) = 22.500610.

M102 = [(−13.593750,−1.640625), (−13.476563,−1.406250)], with
redM102 = [(−13.593750,−1.523438), (−13.476563,−1.406250)];
β(M102) = 22.5.

CBS = (4.492188, 1.523438) with CBV = 22.500610.



J Glob Optim (2007) 38:527–554 549

With tolerance ε = 0.0001, these two boxes are deleted. Since no box remains for
exploration, the algorithm terminates.

Computational results:
Optimal solution: (4.492188, 1.523438)
Optimal value: 22.500610 (relative error ≤ 0.0001)
Computational time: 0.015 s.
Optimal solution found at iteration 10 and confirmed at iteration 10
Maximal number of nodes: 4

Example 2 (Test problem 7 in (16), Chap. 9)

min(−8x1 − 4x2 + 4y1 − 40y2 + 4y3) s.t.

x1, x2 ≥ 0, y solves

min(y1 + y2 + 2y3) s.t.

−y1 + y2 + y3 ≤ 1,
2x1 − y1 + 2y2 − 0.5y3 ≤ 1,
2x2 + 2y1 − y2 − 0.5y3 ≤ 1,
y1, y2, y3 ≥ 0.

Here g1(x, y) = −y1 + y2 + y3 − 1, C(x) = −(x1, x2)
T ,

g2(u, y) = max{−2u1 − y1 + 2y2 − 0.5y3 − 1, −2u2 + 2y1 − y2 − 0.5y3 − 1}, so

θ(u) = min(y1 + y2 + 2y3) s.t.

−y1 + y2 + y3 ≤ 1,
2x1 − y1 + 2y2 − 0.5y3 ≤ 1,
2x2 + 2y1 − y2 − 0.5y3 ≤ 1,
−x1 ≤ u1, −x2 ≤ u2
x1, x2, y1, y2, y3 ≥ 0.

f (u, t) = min(−8x1 − 4x2 + 4y1 − 40y2 + 4y3) s.t.

−y1 + y2 + y3 ≤ 1,
2x1 − y1 + 2y2 − 0.5y3 ≤ 1,
2x2 + 2y1 − y2 − 0.5y3 ≤ 1,
−x1 ≤ u1, −x2 ≤ u2, y1 + y2 + 2y3 ≤ t
x1, x2, y1, y2, y3 ≥ 0.

Initialization
Initial box M1 = [(−3,−1.8, 0), (0, 0, 5)] with redM1 = [(−2.64,−1.8, 0), (0, 0, 5)]
CBS = (0.5, 0.5, 0, 0, 0), CBV = −6, β(M) = −50.
Iteration 1
M1 is divided into two boxes:
M11 = [(−1.32,−1.8, 0), (0, 0, 5)] with β(M11) = −50.
M12 = [(−2.64, 1.8, 0), (−1.32, 0, 5)] with redM12 = [(−2.64,−1.536, 0.32), (−1.32,
0, 5)] and β(M12) = −28.
M11 is selected (for further subdivision). reset M2 ←M11.

Iteration 2
Number of active nodes: 2.
CBV = −6, minM{β(M)} = −50.
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M2 is divided into two boxes:
M21 = (−1.32,−0.9, 0), (0, 0, 5)] with

redM21 = [(−1.32,−0.9, 0), (0, 0, 0.86)] and β(M21) = −25.64.
M22 = (−1.32,−1.8, 0), (0,−0.9, 5)] with
redM22 = (−1.32,−1.8, 0), (0,−0.9, 3.2)] and β(M22) = −38.
M22 is selected: reset M3 ←M22.

Iteration 3
Number of active nodes: 3.
CBV = −6, minM{β(M)} = −38.
M3 is divided into two boxes:
M31 = [(−0.66,−1.8, 0), (0,−0.9, 3.2)] with β(M31) = −38.
M32 = [(−1.32,−1.8, 0), (−0.66,−0.9, 3.2)] with

redM32 = (−1.32,−1.668, 0), (−0.66,−0.9, 3.2)] and β(M32) = −27.
M31 is selected: reset M4 ←M31.

Iteration 4
Number of active nodes: 4.
CBV = −6, minM{β(M)} = −38.
M4 is divided into two boxes:
M41 = [(−0.66,−1.35, 0), (0,−0.9, 3.2)] with

redM41 = [(−0.66,−1.35, 0), (0,−0.9, 0.71)] and β(M41) = −24.82.
M42 = [(−0.66,−1.8, 0), (0,−1.35, 3.2)] with

redM41 = (−0.66,−1.8, 0.35), (0,−1.35, 2.3)] and β(M42) = −32.
CBS is updated:
CBS = (0.15, 0.675, 0, 0.35, 0) with CBV = −17.9.
.
.
.
Iteration 22
Number of active nodes: 1.
CBV = −25.859375, minM{β(M)} = −26.187500.
M22 is divided into two boxes:
M221 = [(−0.009844,−1.792969, 1.357813), (0,−1.785938, 1.428125)] with

redM221 = [(−0.009844,−1.792969, 1.357813), (0,−1.785938, 1.388750)]
β(M221) = −26.003750.

M222 = [(−0.009844,−1.8, 1.357813), (0,−1.792969, 1.428125)] with
redM222 = [(−0.009844,−1.8, 1.378906), (0,−1.792969, 1.414063)]
β(M222) = −26.093750.

CBS is updated:
CBS = (0, 0.896484, 0, 0.597656, 0.390625) with CBV = −25.929688.

With tolerance ε = 0.01, these two boxes are deleted. Since no box remains for explo-
ration, the algorithm terminates.

Computational results:
Optimal solution: x = (0, 0.896484), y = (0, 0.597656, 0.390625).
Optimal value: −25.929688 (relative error ≤ 0.01)
Computational time: 0.047 s.
Optimal solution found at iteration 22 and confirmed at iteration 22.
Maximal number of nodes: 9
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Example 3 This example is a (BLP) randomly generated with n1 = 10 outer variables,
n2 = 6 inner variables, m1 = 2 outer constraints, and m2 = 7 inner constraints.

L(x, y)= 12x1 − x2 − 12x3 + 13x4 + 2x6 − 5x8 + 6x9 − 11x10 − 5y1 − 6y2 − 4y3−7y4

A1 =
[

2 3 −14 2 9 −2 −1 4 0 −2
−1 7 −13 0 15 −2 8 4 −4 7

]
,

B1 =
[

3 −9 2 8 −1 8
6 2 −6 −2 −8 4

]
,

c1 = (−30, 134)T ,

d = (3,−2,−3,−3, 1, 6)T ,

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5 −7 −4 2 −3 9 −9 1 3 −11
−6 5 3 2 −8 −5 −8 3 −7 −3
6 4 −2 0 2 −3 3 −2 −2 −4
−5 −6 0 4 −3 8 −1 0 −2 3
−11 11 −4 −5 10 6 −14 7 11 3
−9 12 4 10 −2 −8 −5 11 4 −1
−7 2 6 0 11 −1 2 2 1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−10 9 6 −4 −6 3
5 7 −1 −1 6 −4
−10 −5 −6 4 −3 1

4 3 4 4 −1 −1
10 7 −7 −7 −2 −7
−2 5 −10 −1 −4 −5
5 5 6 5 −1 12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

c2 = (−83,−92,−168, 96, 133,−89, 192)T .

Computational results
Initial box M1 = [0, 10]16

Optimal solution:
x = (0, 8.170692, 10, 0, 7.278940, 3.042311, 0, 10, 0.001982, 9.989153)T .
y = (3.101280, 10, 10, 10, 0, 9.846133)T

Optimal value: −447.461263 (relative error ≤ 0.01)
Computational time: 54.907 s.
Optimal solution found at iteration 9033 and confirmed at iteration 10323
Maximal number of nodes: 1442

Example 4 (Test problem 3 in [14], Chap. 9.3)

min(2x1 + 2x2 − 3y1 − 3y2 − 60) s.t.
0 ≤ x1, x2 ≤ 50, −10 ≤ y1, y2 ≤ 20, y solves
miny(y1 − x1 + 20)2 + (y2 − x2 + 20)2 s.t.
x1 + x2 + y1 − 2y2 − 40 ≤ 0,
−x1 + 2y1 ≤ −10,
−x2 + 2y2 ≤ −10.

Computational results:
Optimal solution: x = (0, 0), y = (−10,−10).
Optimal value: 0 (relative error ≤ 0.01).
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Computational time: 0.266 s.
Optimal solution found at iteration 1 and confirmed at iteration 43.
Maximal number of nodes: 3
The above optimal solution was given in (16) as a best known solution only. A local
solution x = (25, 30), y = (5, 10) was reported in (26) as the solution of the problem.

Example 5 (Test problem 4, Chap. 9.2, in (16)) This problem is taken from (12) and
has been used for testing purposes in (42). The best known solution given in (16) is
confirmed as optimal by the present algorithm.

min(x− 4y) s.t.

x ≥ 0, y solves

min(y) s.t.

2x− y ≥ 0,
−2x− 5y ≥ −108,
−2x+ 3y ≥ 4,
y ≥ 0.

Computational results
Optimal solution: x = 18.929688, y = 13.953125.
Optimal value: −36.882813 (relative error ≤0.01)
Computational time: 0 s.
Optimal solution found at iteration 8 and confirmed at iteration 8
Maximal number of nodes: 2

Example 6 (Test problem 8 in (16), Chap. 9.2). This problem is taken originally from
(4), where, however, a nonoptimal solution was claimed to be optimal. A correct
optimal solution, pointed out later in (29), is confirmed by the present algorithm.

min(−2x1 + x2 + 0.5y1) s.t.

x1 + x2 ≤ 2, x ≥ 0, y solves

min(−4y1 + y2) s.t.

2x1 − y1 + y2 ≥ 2.5,
−x1 + 3x2 − y2 ≥ −2,
y ≥ 0.

Computational results
Optimal solution: x = (2, 0), y = (1.5, 0).
Optimal value: −3.25 (relative error ≤ 0.01)
Computational time: 0.093 s.
Optimal solution found at iteration 74 and confirmed at iteration 107
Maximal number of nodes: 37

Example 7 (Test problem 5 in (16), Chap. 9.2)

min(−x+ 10y1 − y2) s.t.
x ∈ R+, y ∈ R2+, y solves
miny(−y1 − y2) s.t.
x− y1 ≤ 1,
x+ y2 ≤ 1,
y1 + y2 ≤ 1.
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Computational results
Optimal solution: x = 0, y = (0, 1).
Optimal value: −1
Computational time: 0 s.
Optimal solution found at iteration 0 and confirmed at iteration 0.
Maximal number of nodes: 1
Note that the best known solution x = 1, y = (0, 0) given in (16) is not even feasible.
It is actually an optimal solution of the problem with the inner objective function
changed to y1 + y2.

9 Conclusion

In this paper a novel approach to bilevel nonlinear programming is developed that
is based on exploiting the monotonic structure underlying this class of problems. The
advantage of this approach is that it permits efficient reduction and bounding in the
framework of a BRB procedure using monotonicity cuts. Once more the versatility of
monotonic optimization is demonstrated as a unified method for approaching a wide
class of difficult nonconvex global optimization problems.
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